64 research outputs found

    Theoretical study on the activation mechanism of AMP-kinase by means of Molecular Dynamics Simulations

    Get PDF
    Mammalian AMP-activated protein kinase (AMPK) is a Ser108/Thr132 heterotrimeric enzyme complex (one catalytic subunit a and two regulatory subunits b and g) with a key role as sensor in the cellular energy homeostasis. This function confers AMPK a major role in numerous metabolic disorders, such as type 2 diabetes, obesity and cancer, and explains the progressive interest as a therapeutic target. AMPK is regulated by several mechanisms including indirect and direct activators, which show clear specificity by a particular subunit. We have carried out a series of molecular dynamic simulations of the apo and holo forms of AMPK to gain insight into the mechanism of AMPK activation

    Theoretical study on the activation mechanism of AMP-kinase by means of Molecular Dynamics Simulations

    Get PDF
    Mammalian AMP-activated protein kinase (AMPK) is a Ser108/Thr132 heterotrimeric enzyme complex (one catalytic subunit a and two regulatory subunits b and g) with a key role as sensor in the cellular energy homeostasis. This function confers AMPK a major role in numerous metabolic disorders, such as type 2 diabetes, obesity and cancer, and explains the progressive interest as a therapeutic target. AMPK is regulated by several mechanisms including indirect and direct activators, which show clear specificity by a particular subunit. We have carried out a series of molecular dynamic simulations of the apo and holo forms of AMPK to gain insight into the mechanism of AMPK activation

    Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7.

    Get PDF
    Nitrophorins (NP) 1-7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the effect of Glu27 → Val and Glu27 → Gln mutations on the ligand binding kinetics using CO as a model. The results reveal that annihilation of the negative charge of Glu27 upon mutation reduces the pH sensitivity of the ligand binding rate, a process that in turn depends on the ionization of Asp32. We propose that Glu27 exerts a through-space electrostatic action on Asp32, which shifts the pKa of the latter amino acid towards more acidic values thus reducing the pH sensitivity of the transition between open and closed states

    Role of PheE15 gate in ligand entry and nitric oxide detoxification function of Mycobacterium tuberculosis truncated hemoglobin N

    Get PDF
    The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN

    Continuum solvation models: Dissecting the free energy of solvation

    Get PDF
    The most usual self-consistent reaction field (SCRF) continuum models for the description of solvation within the quantum mechanical (QM) framework are reviewed, trying to emphasize their common roots as well as the inherent approximations assumed in the calculation of the free energy of solvation. Particular attention is also paid to the specific features involved in the development of current state-of-the-art QM SCRF continuum models. This is used to discuss the need to maintain a close correspondence between each SCRF formalism and the specific details entailing its parametrization, as well as the need to be cautious in analyzing the balance between electrostatic and non-electrostatic contributions to the solvation free energy between different SCRF models. Finally, special emphasis is given to the post-processing of the free energy of solvation to derive parameters providing a compact picture of the ability of a molecule to interact with different solvents, which can be of particular interest in biopharmaceutical studies

    Molecular simulations of globins: Exploring the relationship between structure, dynamics and function

    Get PDF
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/32392The discovery in the last two decades of novel members of the globin superfamily has challenged the conventional view about the structure and function of globins. Thus, peculiar structural differences are expected to have direct influence on properties related to ligand migration, binding affinity and heme reactivity. Molecular simulations are a valuable tool to gain insigth into the molecular mechanisms that underlie those structural differences, and their relationship with the diversity of functional roles. In this work, the impact of molecular simulations in exploring the linkage between structure, dynamics and function is highlighted for three representative cases: the migration of ligands through the protein matrix of truncated hemoglobins, the modulation of binding affinity by heme distortion in protoglobin, and finally the functional implications due to the equilibrium between penta- and hexacoordination of the heme with distal histidine in neuroglobin

    Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations

    No full text
    The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins

    Comparative analysis of inner cavities and ligand migration in non-symbiotic AHb1 and AHb2

    No full text
    This study reports a comparative analysis of the topological properties of inner cavities and the intrinsic dynamics of non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. The two proteins belong to the 3/3 globin fold and have a sequence identity of about 60%. However, it is widely assumed that they have distinct physiological roles. In order to investigate the structure–function relationships in these proteins, we have examined the bis-histidyl and ligand-bound hexacoordinated states by atomistic simulations using in silico structural models. The results allow us to identify two main pathways to the distal cavity in the bis-histidyl hexacoordinated proteins. Nevertheless, a larger accessibility to small gaseous molecules is found in AHb2. This effect can be attributed to three factors: the mutation Leu35(AHb1) → Phe32(AHb2), the enhanced flexibility of helix B, and the more favorable energetic profile for ligand migration to the distal cavity. The net effect of these factors would be to facilitate the access of ligands, thus compensating the preference for the fully hexacoordination of AHb2, in contrast to the equilibrium between hexa- and pentacoordinated species in AHb1. On the other hand, binding of the exogenous ligand introduces distinct structural changes in the two proteins. A well-defined tunnel is formed in AHb1, which might be relevant to accomplish the proposed NO detoxification reaction. In contrast, no similar tunnel is found in AHb2, which can be ascribed to the reduced flexibility of helix E imposed by the larger number of salt bridges compared to AHb1. This feature would thus support the storage and transport functions proposed for AHb2. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins

    Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport.

    No full text
    Nonsymbiotic hemoglobins AHb1 and AHb2 discovered in Arabidopsis thaliana are likely to carry out distinct physiological roles, in consideration of their differences in sequence, structure, expression pattern, and tissue localization. Despite a relatively fast autoxidation in the presence of O(2) , we were able to collect O(2) -binding curves for AHb2 in the presence of a reduction enzymatic system. AHb2 binds O(2) noncooperatively with a p50 of 0.021 ± 0.003 Torr, a value consistent with a recently proposed role in O(2) transport. The analysis of the internal cavities derived from the structures sampled in molecular dynamics simulations confirms strong differences with AHb1, proposed to work as a NO deoxygenase in vivo. Overall, our results are consistent with a role for AHb2 as an oxygen carrier, as recently proposed on the basis of experiments on AHb2-overexpressing mutants of A. thaliana

    Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiontic hemoglobin: evidence for a role in oxygen transport

    No full text
    Nonsymbiotic hemoglobins AHb1 and AHb2 discovered in Arabidopsis thaliana are likely to carry out distinct physiological roles, in consideration of their differences in sequence, structure, expression pattern, and tissue localization. Despite a relatively fast autoxidation in the presence of O2, we were able to collect O2-binding curves for AHb2 in the presence of a reduction enzymatic system. AHb2 binds O2 noncooperatively with a p50 of 0.021 \ub1 0.003 Torr, a value consistent with a recently proposed role in O2 transport. The analysis of the internal cavities derived from the structures sampled in molecular dynamics simulations confirms strong differences with AHb1, proposed to work as a NO deoxygenase in vivo. Overall, our results are consistent with a role for AHb2 as an oxygen carrier, as recently proposed on the basis of experiments on AHb2-overexpressing mutants of A. thaliana
    • …
    corecore